Vineyard Management for Quality Wine

Andy Allen
Viticulture and Enology Program
Arkansas Tech University - Ozark
Final wine quality is derived to a large degree from grape composition.

Grape composition is influenced by:

- Climate
- Cultivar
- Site characteristics
- Cultural practices
Quality wine is only made from grapes with good potential for wine quality, managed in such a way as to maximize their components that contribute to wine quality potential.
Vineyard management practices for quality wine grapes

• Focus on:
 – Vine balance
 – Canopy management
 – Crop load management
 – Vine nutrition
Balanced Vines

Balance has been achieved between vegetative growth and fruiting when a sustainable yield of high quality fruit is obtained each season.
The Balancing Act

Fruit production
(Carbohydrates utilized)

Vegetative growth
(Carbohydrates produced)
Indicators of Balance

• Pruning weight per foot of canopy:
 – 0.2 to 0.4 lbs

• Yield to pruning weight ratio (Ravaz Index):
 – Vinifera: 5-10
 – Native and hybrid: largely undetermined but considered to be higher

• Leaf area to fruit weight ratio:
 – 3 to 8 ft²/lb
Factors Affecting Balance

- Cultivar, Rootstock
- Disease and Insect mgt
- Pruning
- Crop load
- Irrigation
- Fertilization
- Climate
- Vine spacing
- Trellising
- Soil
- Weed control

Vine Balance
Major Vineyard Management Factors

• Trellising
• Spacing
• Pruning
• Crop adjustment
Trellising and Spacing

The vine must not only have enough leaf area, the leaves must be properly displayed to achieve maximum photosynthetic production.
Spacing

• Row spacing
 – Has greater effect on yields per acre
 – Should be far enough apart to prevent row-to-row shading

• Vine spacing
 – Far enough apart to allow vine to express vigor
 – Shoot density
Balanced Pruning

• Resulted from research on Concord in Michigan by Partridge and in New York by Shaulis

• Goal is to balance fruit production of the vine with vegetative growth (cane growth and maturation)

• Patridge proposed using pruning weights of live cane tissue from year one to predict upper limit of vine’s capacity to produce and ripen crop in year two
Balanced Pruning

- Estimate vine size and then prune the vine
- Weigh one year old cane prunings using a small spring scale
- Apply the weight obtained to a pruning formula to determine the number of nodes to retain per vine
- Upper limit to node number?
Canopy management

• Cultural practices which modify the canopy density to improve vine microclimate:
 • Trellis choice
 • Vine/row spacing
 • Fertilization/irrigation practices
 • Vine health maintenance
 • Physical manipulation of canopy components*
Canopy management practices

• Shoot thinning
 – Should be done when shoots are 2”-6” in length
 – Remove shoots from “non-count” positions
 – Improves canopy density
 • Reduces shoot density, leaf layer number
 • Increases proportion of canopy gaps, exterior leaves
 – Reduces crop load
Canopy management practices

• Shoot positioning
 – Goal is to re-orient shoots into position appropriate for trellis/training system
 – Should be done when shoots are long enough to remain in place after positioning but before tendrils attach to neighboring shoots
 – May require more than one pass through vineyard
 – Improves environment around fruiting/renewal zone
 – Has benefits for other vineyard management tasks
Canopy management practices

• Leaf removal
 – Should be done between fruit set and pea-size
 – Remove 2-6 leaves per shoot in the fruiting zone
 – Improves canopy microclimate by reducing leaf layer number
 – Possibly the most beneficial canopy management practice
 • Can improve fruit composition and color
 • Can reduce bunch rots
Benefits of canopy management

• Improving the canopy microclimate to permit more light and air penetration into fruiting zone
 • Reduces disease pressure
 • Improves spray penetration
 • Allows more efficient photosynthesis
• Improves fruit composition
 • Improves color
 • Reduces levels of methoxypyrazines
 • Improves development of flavor and aroma compounds
 • Improves sugar and acid composition

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Incidence</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vignoles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaf removal</td>
<td>13.8*</td>
<td>15.0*</td>
</tr>
<tr>
<td>Control</td>
<td>28.7</td>
<td>25.1</td>
</tr>
<tr>
<td>Seyval blanc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonsprayed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaf removal</td>
<td>28.3*</td>
<td>27.3*</td>
</tr>
<tr>
<td>Control</td>
<td>42.8</td>
<td>31.2</td>
</tr>
<tr>
<td>Sprayed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaf removal</td>
<td>17.4*</td>
<td>20.5*</td>
</tr>
<tr>
<td>Control</td>
<td>34.1</td>
<td>32.1</td>
</tr>
</tbody>
</table>

Light environment effects on grape quality

- Good exposure of bunches to light increases terpenoids, phenolics, and color pigments
- Good exposure can decrease levels of methoxypyrazines
- Excessive heat can reduce color, phenolics and volatile aromatics
Cluster exposure effects

• Cluster exposure of Traminette
 – Exposed (E), Light Shade (LS), Moderate Shade (MS), Heavy Shade (HS)
 – Leaf layer numbers 0, 1, 2, >3
 – E, LS and MS had higher Brix, lower pH and lower TA and HS
 – As shading decreased, PVT and total monoterpenes increased with E having ~30% higher concentration than HS
Cluster exposure effects

- Cluster exposure of Golden Muscat
 - Exposed (58% - leaf removal) and Shaded (48% - shoot positioned)
 - Shaded clusters were darker than exposed
 - Exposed clusters had higher TSS (~2 °Brix)
 - Exposed clusters had phenolic content (350 mg/L vs 270 mg/L)
 - Shaded clusters had higher pH and K+ content
 - Shaded clusters had higher FVT than exposed
 - Exposed clusters had higher PVT than shaded
 - Wines from exposed clusters were less acidic, had higher phenolics (24g/L) and greater PVT than shaded

Cluster exposure effects

• Cluster exposure of Shiraz
 – Shaded (5%), Moderate Exposure (10-40%), High Exposure (40-80%)
 – Shading reduced Brix, delayed ripening by 7 days compared with MET and HET
 – Shading reduced total anthocyanins compared to MET and HET
 – Total skin phenolics were higher in HET than MET and in MET than in ST
 – Skin tannins in ST were 30-40% lower than HET, tannins in HET were 10-20% higher than MET
 – ST wines were rated lower for mouthfeel and fruit flavor

Effect of one- and two-sided leaf removal on composition of Cynthiana juice and wine in three seasons in Arkansas.

<table>
<thead>
<tr>
<th>Year and treatment</th>
<th>Soluble solids (%)</th>
<th>pH</th>
<th>Titratable acidity</th>
<th>Tartaric acid (g/L)</th>
<th>Malic acid (g/L)</th>
<th>Total red pigment color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>21.9 a</td>
<td>3.58 a</td>
<td>14.2 a</td>
<td>6.3 a</td>
<td>7.4 a</td>
<td>100 b</td>
</tr>
<tr>
<td>East side</td>
<td>22.1 a</td>
<td>3.53 a</td>
<td>13.6 a</td>
<td>6.2 a</td>
<td>6.8 a</td>
<td>121 a</td>
</tr>
<tr>
<td>Both sides</td>
<td>22.1 a</td>
<td>3.48 b</td>
<td>12.5 b</td>
<td>6.0 a</td>
<td>6.5 a</td>
<td>125 a</td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>22.9 a</td>
<td>3.83 a</td>
<td>10.1 a</td>
<td>8.0 a</td>
<td>5.8 a</td>
<td>124 b</td>
</tr>
<tr>
<td>East side</td>
<td>23.1 a</td>
<td>3.84 a</td>
<td>10.4 a</td>
<td>8.2 a</td>
<td>5.4 a</td>
<td>157 a</td>
</tr>
<tr>
<td>Both sides</td>
<td>22.4 a</td>
<td>3.84 a</td>
<td>10.3 a</td>
<td>8.0 a</td>
<td>5.3 a</td>
<td>169 a</td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>21.2 b</td>
<td>3.85 a</td>
<td>11.2 a</td>
<td>7.0 a</td>
<td>6.2 a</td>
<td>18 b</td>
</tr>
<tr>
<td>East side</td>
<td>21.8 a</td>
<td>3.82 a</td>
<td>10.3 b</td>
<td>6.9 a</td>
<td>5.2 b</td>
<td>25 a</td>
</tr>
<tr>
<td>Both sides</td>
<td>22.1 a</td>
<td>3.79 a</td>
<td>10.3 b</td>
<td>6.8 a</td>
<td>4.5 b</td>
<td>24 a</td>
</tr>
</tbody>
</table>

Leaf removal and methoxypyrazines

• No removal; removal of leaves 1,3,5; removal of leaves 1-5 at 10, 40, 60 DAA

• Cabernet Franc
 – Early (10, 40 DAA) leaf removal reduced IBMP by up to 88% (2007) and 60% (2008)
 – 10 DAA increased Brix in 2007
 – Almost all treatments reduced TA in both years
 – pH was not affected by leaf removal treatments

• Merlot
 – All leaf removal treatments significantly reduced IBMP 37-52%
 – Leaf removal treatments had no effect on Brix, pH or TA

Crop load management

• Removal of shoots and clusters to achieve yield that is in balance with the vegetative growth of the vine
Effects of Overcropping (Excessive Crop Load)

- Delayed maturity
- Decreased growth
- Loss of vine size
- Increased risk for winter injury
- Reduced subsequent yields
- Reduced fruit quality
- Reduced profitability

Winkler. 1954. AJEV 5:4-12
The 3 steps of crop load management

- Balanced pruning
- Shoot thinning
- Cluster thinning
Shoot thinning - hybrids

- Effects from research have been variable and cultivar specific
 - Cultivar Yield (t/a) Ravaz Index
 - Aurore 8 to 5.5 13.6 to 8
 - Chancellor 11.8 to 6.9 15.8 to 9
 - Villard Noir 10.7 to 7.1 16.5 to 11.2
- No appreciable effect on Brix, pH or TA
Shoot thinning - *vinifera*

- More effective on *vinifera* fruit and wine composition
- Minor reduction in yield

- **Pinot Noir**
 - Increased TA and Brix in berries and must

- **Cabernet Franc**
 - Increased Brix and color intensity in berries
 - Reduced TA in musts
 - Higher color intensity, phenolics and anthocyanins in wine
Effects of canopy management practices on yield and fruit composition of Chambourcin grapevines trained to a high-wire single curtain trellis.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Yield Per Acre (tons)</th>
<th>Average Cluster Number</th>
<th>Average Cluster Wt (g)</th>
<th>Average Berry Wt (g)</th>
<th>Average Berries/Cluster</th>
<th>Soluble Solids (%)</th>
<th>pH</th>
<th>Titratable Acidity (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP+LR</td>
<td>9.7 a</td>
<td>85.79 a</td>
<td>150.16 efgh</td>
<td>2.03 ab</td>
<td>74.92 cdefg</td>
<td>21.1 fg</td>
<td>3.41</td>
<td>7.29 a</td>
</tr>
<tr>
<td>CONTROL</td>
<td>9.3 a</td>
<td>91.25 a</td>
<td>135.73 h</td>
<td>1.99 b</td>
<td>68.51 g</td>
<td>20.8 g</td>
<td>3.41</td>
<td>7.26 a</td>
</tr>
<tr>
<td>LR</td>
<td>9.1 a</td>
<td>81.92 a</td>
<td>147.42 efgh</td>
<td>2.07 ab</td>
<td>71.40 efg</td>
<td>21.4 efg</td>
<td>3.38</td>
<td>7.20 abc</td>
</tr>
<tr>
<td>SP</td>
<td>8.6 ab</td>
<td>84.00 a</td>
<td>137.58 gh</td>
<td>2.02 ab</td>
<td>67.98 g</td>
<td>21.1 fg</td>
<td>3.43</td>
<td>7.19 abc</td>
</tr>
<tr>
<td>ST</td>
<td>8.3 abc</td>
<td>64.84 b</td>
<td>174.30 abc</td>
<td>2.08 ab</td>
<td>83.92 abc</td>
<td>22.1 def</td>
<td>3.53</td>
<td>6.98 abcd</td>
</tr>
<tr>
<td>ST+LR</td>
<td>7.1 bcd</td>
<td>56.58 bcd</td>
<td>168.38 bcd</td>
<td>2.17 a</td>
<td>77.85 bcdef</td>
<td>23.1 bcd</td>
<td>3.50</td>
<td>6.80 def</td>
</tr>
<tr>
<td>ST+SP+LR</td>
<td>7.0 cd</td>
<td>56.67 bcd</td>
<td>164.08 bcde</td>
<td>2.18 a</td>
<td>75.18 cdefg</td>
<td>23.0 cd</td>
<td>3.53</td>
<td>6.87 cdef</td>
</tr>
<tr>
<td>ST+SP</td>
<td>6.4 de</td>
<td>59.25 bc</td>
<td>145.89 fgh</td>
<td>2.10 ab</td>
<td>69.46 fg</td>
<td>22.6 de</td>
<td>3.46</td>
<td>6.86 bcdef</td>
</tr>
<tr>
<td>SP+CT</td>
<td>6.1 def</td>
<td>51.50 cde</td>
<td>159.42 cdef</td>
<td>2.10 ab</td>
<td>75.92 cdefg</td>
<td>24.3 ab</td>
<td>3.54</td>
<td>7.08 abcd</td>
</tr>
<tr>
<td>CT</td>
<td>5.7 defg</td>
<td>46.42 de</td>
<td>163.00 bcde</td>
<td>2.07 ab</td>
<td>79.04 abcde</td>
<td>24.0 abc</td>
<td>3.56</td>
<td>7.25 ab</td>
</tr>
<tr>
<td>CT+LR</td>
<td>5.0 efgh</td>
<td>41.79 ef</td>
<td>160.28 cdef</td>
<td>2.04 ab</td>
<td>78.75 abcde</td>
<td>24.9 a</td>
<td>3.58</td>
<td>6.95 abcde</td>
</tr>
<tr>
<td>SP+CT+LR</td>
<td>4.8 fgh</td>
<td>41.42 ef</td>
<td>154.11 defg</td>
<td>2.12 ab</td>
<td>72.92 defg</td>
<td>24.5 a</td>
<td>3.57</td>
<td>6.88 bcdef</td>
</tr>
<tr>
<td>ST+CT+LR</td>
<td>4.62 fgh</td>
<td>32.92 f</td>
<td>188.55 a</td>
<td>2.16 a</td>
<td>87.19 a</td>
<td>25.0 a</td>
<td>3.65</td>
<td>6.60 ef</td>
</tr>
<tr>
<td>ST+CT</td>
<td>4.3 gh</td>
<td>32.25 f</td>
<td>178.06 ab</td>
<td>2.09 ab</td>
<td>85.56 ab</td>
<td>24.5 a</td>
<td>3.59</td>
<td>7.11 abcde</td>
</tr>
<tr>
<td>ST+SP+CT+LR</td>
<td>4.0 h</td>
<td>31.67 f</td>
<td>167.21 bcde</td>
<td>2.05 ab</td>
<td>81.54 abcd</td>
<td>24.7 a</td>
<td>3.63</td>
<td>6.52 f</td>
</tr>
<tr>
<td>ST+SP+CT</td>
<td>3.7 h</td>
<td>29.04 f</td>
<td>169.02 bcde</td>
<td>1.97 b</td>
<td>86.02 ab</td>
<td>24.8 a</td>
<td>3.63</td>
<td>6.74 def</td>
</tr>
</tbody>
</table>
Vine nutrition

• Many nutrients are required by vines for healthy vine growth and proper function
• Imbalances of certain nutrients can have serious consequences for wine quality
• Nutrient status and requirement should be established by regular monitoring
 – Observation
 – Soil testing
 – Petiole testing
Nitrogen (N)

- Required by grapevines in largest amount of all nutrients
- Taken up or utilized as either nitrate (NO_3^-) or ammonium (NH_4^+)
- Used in amino acids, proteins, nucleic acids, chlorophyll, enzymes
- Mobile in plants
- Vine nitrogen status
 - Excess levels can cause excess vigor, delay ripening, decrease berry quality
 - Deficiencies can reduce growth, crop, berry quality and aroma precursors
Nitrogen fertilization of Riesling

• 3-yr study in WA State on site with low-fertility
• Fertilization rates of 0, 50, 100, 200 lbs/acre
• As N rate increased:
 – Pruning wt increased up to 100 lb rate
 – Yield increased with 50 lb, no significant difference from 50 to 200 lbs
 – Ripening and harvest was delayed from 6-16 days with increasing rate of N
 – Total N, amino acids increased as N did
 – Increasing N reduced free monoterpenes, increased many bound monoterpenes
 – Decreased some higher alcohols
 – Increased concentrations of most esters
Potassium (K)

- Used in large quantities; in grapevines is 2nd most required element
- Used as regulator of biochemical processes in plants including: CHO production, protein synthesis, solute and sugar transport, stomatal regulation
- Taken up as K+ ion
- Vine potassium status
 - Deficiencies can result in lower sugar levels
 - Excesses can potentially lead to high juice/wine pH levels
Excess potassium

• Morris, et al. 1987
 – 3 year study
 – 5 winegrape varieties (Ge, Se, CS, deC, Cyn)
 – Fertilized with 6 lbs K_2SO_4 per vine
 – Significantly higher must pH (3.6 – 3.8) in all except Gewürztraminer

• Morris, et al. 1983
 – 3 high rates of K^+ to applied weekly to Concord vines
 – Juice processed and analyzed either fresh or after 3-day cold storage
 – In both cases juice pH was significantly increased
 – High pH led to juices of less desirable color
Conclusions: Vineyard management and grape quality

- Wine grape quality development is improved by practices that improve:
 - Vine health and nutrition
 - Leaf area:fruit ratio
 - Leaf and fruit exposure to light
- Research results on many aspects of vineyard management vary, especially according to region and grape variety, indicating need for regional and varietal specific investigations