Brettanomyces prevention

- Use SO₂ at crush
- Sanitize or sterilize new barrels
- Clean surfaces and containers thoroughly
- Employ microbial monitoring
 - Test all barrels and tanks initially and periodically
 - Filter and SO₂ if found
 - Remove contaminated cooperage
Brettanomyces cure

- No known cure for odor
- Low level can be tolerated or even desired by some
Generation of Cork Taint

- Mold by-products, usually *Penicillium* and *Apergillus* species
 - 2,4,6-trichloro anisole (TCA)
 - Produced in presence of chlorine
 - Extremely low olfactory threshold (ppt)
 - Diminish other aromas at less than threshold
 - guaiacol, geosmin, 2-methylisoborneol (MIB), octen-3-ol and octen-3-one
Prevention of Cork Taint

- Avoid use of chlorine cleansers in winery
 - Peroxyacetic or ozone substitution?
- Avoid storage of moldy wood or other fiber in winery
- Avoid penta-treated wood and chlorinated insecticides near wine
- Use certified corks
- Use non-cork closures
Cure for Cork Taint

- Research into specific binding agents for removal ongoing
SO$_2$ Usage

- Activity pH dependent
- Free SO$_2$ bound by oxidants and sugars
- Crush
- Post-fermentation or stop fermentation
- During storage
- Freshen wines
- Bottling
- Sanitation
SO$_2$ & Settling At Crush

- Depends on grape condition
 - pH, contamination, ripeness
 - 0 to 100 ppm
 - Major part binds to skins and must settlings
- Inhibits microorganisms before yeast added
- Add to crusher, pressed must, or tank must
- Chilling must can be done B4 fermentation
 - Rack off lees and ferment
SO$_2$ at End of Fermentation & During Storage

- Combine with chilling to stop prematurely
 - Leave residual sugar
 - Rapid chilling and 90 to 125 ppm SO$_2$ to stop
 - Rack off and maintain SO$_2$ at 60 to 80 ppm

- Add when racking to dry fermented
 - 30 to 50 ppm
 - Maintain during storage
 - Check frequently and after handling
SO$_2$ Binds Wine Components

- Can use to bind H$_2$S and acetaldehyde and other aromas \Rightarrow freshens wine
- Binds with oxygen
- Binds with anthocyanins and phenolics
- Binds with sugars
Filtering, Fining, Chilling and \(\text{SO}_2 \) Prior to Bottling

- Fining and/or filtering can be done prior to aging in stainless or barrels or B4 bottling
 - May change texture of wine
 - Early filtration lessens chances of spoilage
 - Fining, filtering B4 or during cold break
- Add \(\text{SO}_2 \) to tank to inhibit MO’s
 - 35 to 100+ ppm, depending on residual sugar
- Add \(\text{SO}_2 \), filter prior to or during bottling
 - Filter and aeration removes some \(\text{SO}_2 \)
 - Bottle rinse may leave some \(\text{SO}_2 \)
SO$_2$/Citrate for Sanitation

- Keep fresh solution handy in barrel for rinsing hoses, fittings, containers, etc.
- SO$_2$ combined with citrate makes good sanitation mix or barrel sanitation
 - Sanitation rinse
 - 3 g KMS + 6 g citrate/gallon good solution: pH 3.0
 - Barrel storage
 - Long term: rinse and burn sulfur stick in barrel
 - Short term: H$_2$O + (45g KMS + 90g citrate)/barrel
TANK AND BARREL MANAGEMENT

Giving Your Wines a Good Home

Stephen Menke
Penn State Enology Extension Educator
TANK AND BARREL CONSIDERATIONS

- Capacity
- Diversity
- Cleaning
 - Soil removal
 - Bases, Acids, Detergents
- Sanitation
 - Surface
 - Deep
General Principles of Tank and Barrel Management

- You can never have too many tanks
 - Enough start-up tanks for first two years; plan for 1, 2, 3 years
 - Various sizes, some variable capacity, 20% total extra capacity
- You can have too many barrels or barrels too soon
 - Start barreling wines when you do not need volume for quick sale
- Stainless tanks are not a luxury, they are efficient over time
 - Man ports, racking port, thermometer
 - Temperature controlled fermentation tanks favor quality control
- Plan tank placement for easy work flow and cleaning
- Tank sanitation is paramount
Purposes of Cleaning, Sanitizing, and Sterilizing Tanks

- Get rid of microorganisms
- Get rid of nutrients and contaminating compounds
- Prevent entry and build-up of microorganisms and other contaminants
Tank Cleaning and Sanitation

- Clean and sanitize before filling and after emptying
 - Clean immediately or it won’t get done properly
- Solublize surface soil layer and scrub it off
 - Base, acid, physical removal
 - Cleansers make soilants hydrophilic (salts) or amphipathic (micelles), so water can carry them
 - Acid, base, or neutral detergents
- Pressure wash to remove final soil layer and soap
- Sanitize surface
- Sterilize surface as necessary before re-using
- If not re-using, rinse with clean water and air-dry
Types of Tank Surface Soilants

- Larger, looser particles
 - Removed with liquid rinse and/or detergents

- Tightly bound crusts, greases, films
 - Use physical scouring and/or stabilized cleansers (non-ionic, cationic, anionic)

- Impregnated soils
 - Strong oxidizing cleansers, with or without heat

- Non-soil microorganisms
 - Remove with sanitation and/or sterilization
Types of Cleansers

- **Cleansers are Surfactants**
 - Surface active reagents, like organic enzymes and detergents

- **Enzymes**
 - Dissolve specific compounds under specific conditions

- **Ionic surfactants**
 - Cationic positively charged in water
 - Anionic negatively charged in water
 - Usually disassociate in water

- **Non-ionic surfactants**
 - Do not easily disassociate in water
Types of Ionic Cleansers

- **Alkaline detergents**
 - **Caustic**
 - Contains sodium hydroxide or potassium hydroxide
 - Very strong cleanser and saponifier
 - **Mild**
 - Contains sodium, potassium, ammonium salts of phosphates, silicates, carbonates, borates

- **Acid detergents**
 - Contain organic or inorganic acids, strong to weak
 - Soften and remove mineralized layers

- Alkaline and acid detergents often used sequentially