

Grapevine Nutrition

The best diagnostic tool is your eyes!

Maior		Minor	
Nitrogen	Ν	Molybdenum	Мо
Phosphorus	Ρ	Boron	В
Potassium	K	Copper	Cu
Sulfur	S	Manganese	Mn
Calcium	Ca	Zinc	Zn
Iron	Fe	Chlorine	CI
Magnesium	Ma	Cadmium	Cd

General roles of major and minor nutrients

- 1. Structural: Growth & development; e.g. N required for shoot and root growth.
- 2. Catalytic agents: Many micronutrients are important enzyme co-factors, e.g. Mn
- 3. Electrochemical reasons: Controlling charge & balance; e.g. K pumps control stomatal movement

	Roles of various macro elements							
	ROLE	DEFICIENCY	TOXICITY	OPTIMAL LEVEL				
Ν	Shoot growth, root growth , overall vine growth Structural Enzymes Proteins	Chlorosis Weak growth Yield reduced	Waterberry EBSN	2.2-5%				
Ρ	Root growth, fruit set , plant energy Structural Nucleic acids ATP	Purple leaves Poor berry set	None noted	0.2-0.46%				
К	Sugar transport to berries, water balance Electro potential gradients	Blackening of leaves Yield reduced	None noted	> 1.5% ₅				

	Roles of various secondary						
	ROLE	DEFICIENCY	TOXICITY	OPTIMAL TISSUE LEVEL			
Ca	Berry integrity Pectin Cell walls Organelles	Soft berries	Waterberry EBSN	1.2-3.2%			
Mg	Photosynthesis Chlorophyll Co-factor Proteins	Chlorosis Necrosis	None noted	< 0.3%			
S	S-metabolism Amino acids Proteins	Chlorosis	None noted	?			
fee 2007 ()				6			

	Role of micronutrients						
	ROLE	DEFICIENCY	TOXICITY	OPTIMAL TISSUE LEVEL			
Fe	Photosynthesis Chlorophyll Ferredoxin	Chlorosis	None noted	50-200 ppm			
Mn	Enzyme action Co-factor Chloroplasts	Chlorosis	None noted	25-200 ppm			
Zn	Cell Division, fruit set ^{Auxins Co-factor}	Dwarfing Short internodes Zig-zag form	None noted	30-60 ppm			
				7			

Role of micronutrients

	ROLE	DEFICIENCY	TOXICITY	OPTIMAL TISSUE LEVEL
Cu	Photosynthesis	Dwarfing; rosetting Short internodes	Short internode Small leaves	10-300 ppm
В	Fruit Set (Pollen growth)	Stunting Poor fruit set Tendril necrosis	Leaf cupping, internode swelling	30-100 ppm
Мо	N-fixation	?	None noted	?

inty and Form in Soil a	of Major Nut nd Plants	rients
Macron	utrients	
Mobility in Soil	Plant Available Form	Mobility in Plant
Med – High	NH ₄ +, NO ₃ -	High
Low	HPO4 ⁻² , H ₂ PO ₄ -	High
Low – Med	Potassium ion K ⁺	High
	in Soil an Macron Mobility in Soil Med – High Low Low – Med	in Soil and Plants Macronutrients Mobility in Soil Plant Available Form Med – High NH ₄ +, NO ₃ ⁻ Low HPO4 ⁻² , H ₂ PO ₄ ⁻ Low – Med Potassium ion K ⁺

M	obility and Fo in Soil ar	orm of Nutrier nd Plants	nts
	Secondary	/ Nutrients	
	Mobility in Soil	Plant Available Form	Mobility in Plant
Calcium	Low	Ca +2	Low
Magnesium	Low	Mg+2	High
Sulphur	Medium	SO4-2	Low-med

Mo	bility and	Form of Nutrie	nts
	in Soi	and Plants	
	Micr	onutrients	
	Mobility in Soil	Plant Available Form	Mobility in Plant
Boron	High	B(OH) ₃ ⁰ , H ₂ BO ₃ ⁻	Low-med
Copper	Low	Cu ⁺²	Low
Iron	Low	Fe ⁺² , Fe ⁺³	Low
Manganese	Low	Mn ⁺²	Low
Molybdenum	Low-med	MoO ₄ -2	Low-med
Zinc	Low	Zn ⁺² , Zn(OH) ₂ ⁰	Low
Chlorine	High	Cl-	High

strongly acid	acid	alightly acid	slightly acid	slightly alkaline	alightly alkaline	medium alkalino	strongly alkalin
	of the local division in which the local division in the local div		n	trogen	-	Contraction of the	
	-	Contraction of the	p	nospho	aus		-
	-	-	р	otassiu	m		100
	State of the local division of the local div		SI	lphur			-
			c	alcium			
	-	-	m	agnes	lum		and the second se
	iron						
	mangar	nese					
	boron						-
	conner	8 zinc					

What is a fertilizer?

Technically any material added to the system that provides N,P or K or other mineral elements used by the plant

What is a fertilizer?

Must consider

- Cost per unit
- Stability for handling
- Ease of application
- Source/availability
- Pollution/losses

Nitrogen Sources – Soil Applied

- Granular Urea 46-0-0
- Ammonium Nitrate 34-0-0
- Calcium Ammonium Nitrate 27-0-0
- Ammonium Sulphate 21-0-0
- Calcium Nitrate 15.5-0-0
- Potassium Nitrate 14-0-41
- Manures

Nitrogen Sources

- Granular Urea 46-0-0
 - 98.5% pure chemical
 - Low cost
 - If applied during growing season must be incorporated to avoid N losses as NH₃

Nitrogen Sources

- Ammonium Nitrate 34-0-0
 - More expensive per unit N than urea but stable
 - More hygroscopic than urea (Keep it dry!)
 - Dissolves in water to ammonium and nitrate ions (NH 4 and NO 3)

Nitrogen Sources

- Calcium Ammonium Nitrate 27-0-0
 - 80% Ammonium Nitrate plus limestone
 - Lime partially balances the acidic release due to ammonium ion

Nitrogen Sources

- Calcium Nitrate 15.5-0-0
 - Expensive source of N
 - Only where Ca and N definitely needed and soil acidification undesirable
 - 15.5% N and 19% water soluble Ca
 - Immediately available to plant

Nitrogen Sources

Potassium Nitrate 14-0-41

- Expensive source of N

 Not commonly used except for specific high value crops and needs

Nitrogen Sources

Manures – Solids per tonne

- Hog 1%, Dairy -1%, Beef 0.6%, Poultry - 2.2%
- Liquids per tonne
 - Hog 3.7 %, Dairy 2.9 %, Beef -2.5%, Poultry - 7.5%

Nitrogen Sources - Foliar

- Urea
- 1 to 2 pounds per 25 gallons of water
- Do not apply within 2 weeks of bloom period
- Do not apply after veraison

Phosphorus

- Stimulates root development
- Increases stalk and stem strength
- Flower formation and seed production
- Crop maturity uniformity
- May assist in plant disease resistance

Phosphorus Sources – Soil

- Single Superphosphate 0-20-0
- Triple Superphosphate 0-46-0
- Mono ammonium phosphate 11-52-0
- Di-ammonium phosphate 18-46-0
- Rock Phosphate
- Bone Meal
- Manures

Phosphorus Sources

- Single Superphosphate 0-20-0 - 20% available P, 12% Sulphur, 20 %
 - Calcium
 - Expensive relative to other P sources
 - Do not blend with urea!

Phosphorus Sources

Triple Superphosphate 0-46-0 – mostly mono calcium phosphate

- Used in blends or direct application

Phosphorus Sources

- Mono–ammonium phosphate (MAP) 11-52-0
 - Economical source of N and P
 - Safe to use
 - Less toxic than diammonium P in band use

Phosphorus Sources

- Di-ammonium phosphate
 - (DAP)18-46-0
 - Low cost per unit
 - N is 100% water soluble, P 90% water soluble
 - Concern over ammonia injury in alkaline soils

Phosphorus Sources

Rock Phosphate 0-15-0

- Sedimentary
- Wide range of solubility but generally low
- Solubility low to nil in alkaline soils

Phosphorus Sources

- Bone Meal 0-30-0
 - Very slow release
 - Used for organic production but source must be verified

Phosphorus Sources

- Manures Solids per tonne Dairy –.15%, Beef – .21%, Sheep -.54% Poultry – 1.24%, Horse – 0.24%
- Liquids per tonne Hog – .18 %, Dairy – .12 %, Beef – .07%, Poultry – .24%

OMAF NMAN 2001 Software

Phosphorus Sources - Foliar

Generally not recommended

Potassium

- Potassium is one of the most frequent nutritional deficiencies of vines.
- A grapevine with inadequate potassium produces poor, unevenly ripened fruit and reduced yields.
- Severe deficiency results in defoliation.

Potassium

- Leaves in the mid- to basal portions of shoots are affected.
- Clusters of deficient vines tend to be small with a few unevenly ripened berries.
- Shatter of berries occurs in extreme cases.

Potassium Sources

- Muriate of Potash 0-0-60 and 0-0-62
 - Least expensive source of K
 - Red Muriate 0-0-60 Fe impurities give red color
 - White Muriate 0-0-62 crystallization potassium chloride

Potassium Sources

- Potassium Sulphate 0-0-50
 - Extract of brines from Utah
 - 50 to 52% potash and 17% S in soluble form
 - Used mainly on crops sensitive to Cl

Potassium Sources

41

- Sulphate of Potash Magnesia 0-0-22
 - Mined from deposits in New Mexico
 - Sold as K-Mag and Sul-Po-Mag
 - Compact 21% K₂O, 10% Mg, 21% S
 - Crystalline 22% K₂O, 11%Mg, 22% S
 - Useful form of soluble Mg, high cost source of K
 - Used as source of K and Mg for high pH soils (will not raise pH)

Potassium Sources

Manures – Solids per tonne

Sheep - 0.75%, Dairy -0.48%, Beef - 0.61%, Poultry - 1.59%, Horse -.66%

Liquids – per tonne Hog – .26 %, Dairy – .35 %, Beef – .19%, Poultry – .32 %

OMAF NMAN 2001

Soil and Tissue Sampling

- Establish base levels of nutrients
- Diagnose problem areas
- Monitor nutrient levels
- Assist in establishing fertilizer and lime requirements

45

What a soil analyses provides

- General composition & texture of the soil
- Soil pH at time of sampling

What a soil analyses provides

Limitations

- Nitrogen content fluctuation over season
- Does not address relationships between elements, e.g., antagonistic action of K and Mg
- Does not reflect what perennial crops such as vines actual take out of the soil

What a tissue analyses provides

- General concentration in tissue
- Results will be variable with tissue selected and time of season selected
- Nitrogen content will fluctuate over season
- Sample location either petiole of leaf opposite fruit cluster at bloom or mid way leaf petiole on current season growth just after veraison

What a tissue analyses provides

- Plant stresses not taken into consideration – e.g. drought, excessive crop level, recent pruning, shading
- Sample size must be cultivar specific with about 100 to 150 petioles per sample needed for analyses

Foliar Nutrients		
Nutrient	Timing	Material
Magnesium	Leaf emergence	Epsom salts
Zinc	3 weeks pre bloom	Neutral zinc, zinc oxide or chelates
Boron	Soil berm spray or foliar 3 weeks prior to bloom	Solubor (20%) max 5 Lbs per year
Manganese	When visual deficiency appears	(manganese sulfate)
Iron	Visual symptoms	Iron chelates
		52

Fertilization issues

- Bud Break to Prebloom
 - Nitrogen, Phosphorus, Zinc, Boron.
 Magnesium, Iron
- Bloom to Veraison
 Magnesium, potassium, nitrogen, iron
- Veraison to Harvest
 - Potassium, phosphorus, calcium