
Matching Winegrape Cultivars to Nebraska Landscapes

W.J. Waltman¹, P.E. Read², J.S. Peake³, J.L. Holtz³, and S. Gamet²

 ¹115 Ferguson Hall, Dept. of Computer Science and Engineering, University of Nebraska-Lincoln,
 ²Dept. of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583-0195.
 ³Durham Science Center, Dept. of Geography-Geology,
 University of Nebraska-Omaha, Omaha, NE 68182-0199

Matching Winegrape Cultivars to Nebraska Landscapes

Prior to the Prohibition

Grapes were grown in Nebraska prior to the Prohibition—about 5000 acres

Largely grown in the southeastern portion of the state

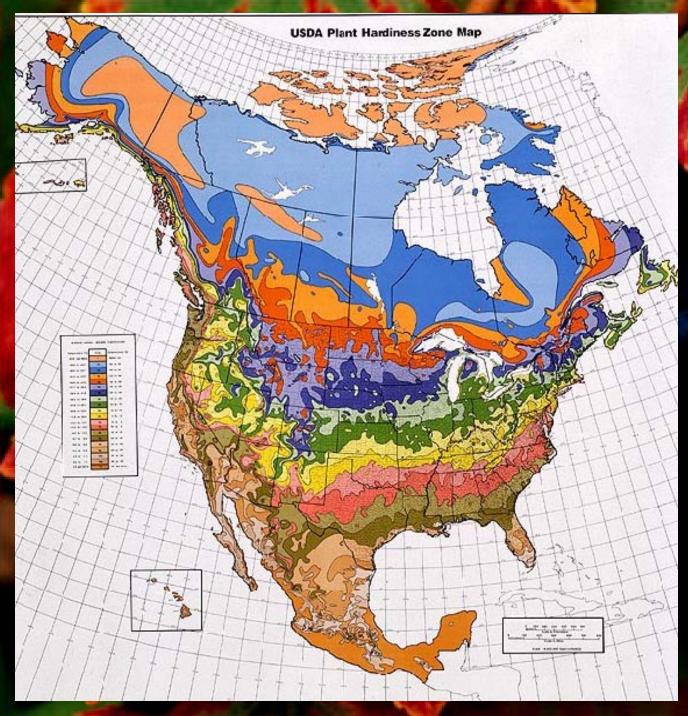
The viticultural knowledge of the region was lost until the Farm Winery Act (1994)

*~13 bonded wineries in Nebraska today and about 200 growers and 400 acres of vines

A Geography of Viticulture

Concept of Terroir

It embraces the soil landscape and subsoil, the geology (bedrock and landforms); microclimate down to the vine, the macroclimate of the region; elevation, slope, and aspect; proximity to other features—lakes, streams, windbreaks, or the structures of man; the viticulture (variety, rootstock, pruning, and training) and enology (fermentation style, length of maceration, and refinement); and the culture (ethnicity, traditions, and beliefs) of the site.


The combined effect of a region's geomorphic, pedologic, and climatic processes
Defines the growing environment
Reflects "uniqueness of place" or "sense of place".
Does Nebraska have terroirs? How would we recognize them?

Objectives

Testing the grower observations and hypotheses that Tmin extreme values are pro-gressively becoming warmer in Nebraska through time, allowing a new window of opportunity for V. vinifera and French-American hybrids to be introduced and survive Nebraska winters,

Matching winegrape cultivars to the landscapes and microclimates of the Northern Great Plains through terrain-modeling of thermal climate data, and

Developing the biogeoinformatics characterizing the growing regions for winegrape cultivars that can eventually lead to the recognition of terroirs and development of American Viticultural Areas (AVAs).

USDA Plant Hardiness Zones (Cathey, 2003)

Plant Hardiness Zones have shifted northward from the earlier version; Tmin extreme values are becoming warmer

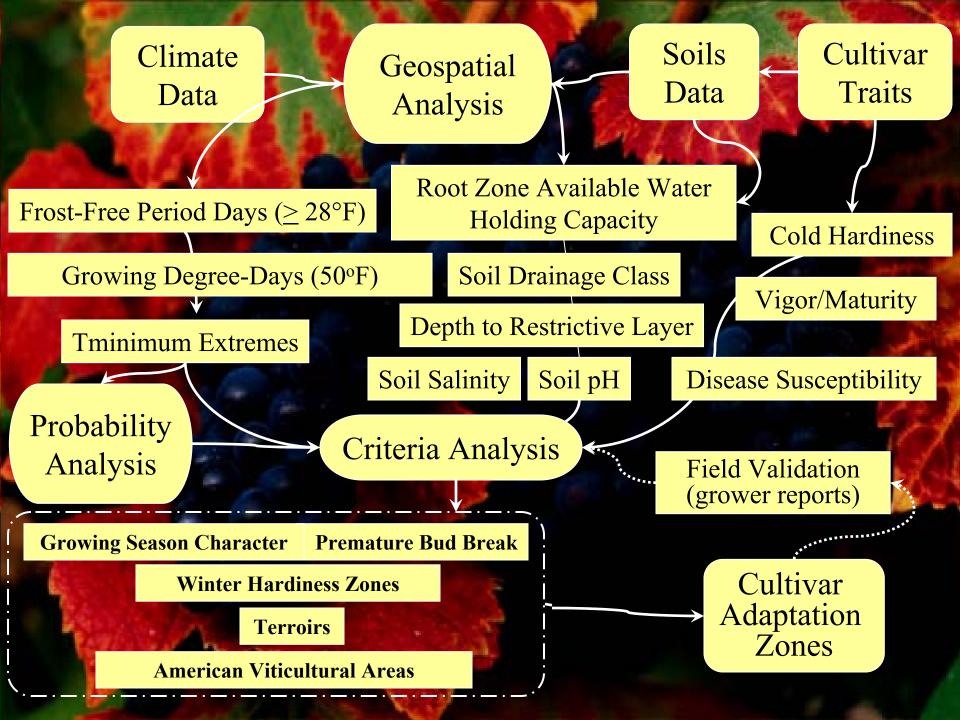
Urban heat island effects are becoming evident over the past 13 years in this study

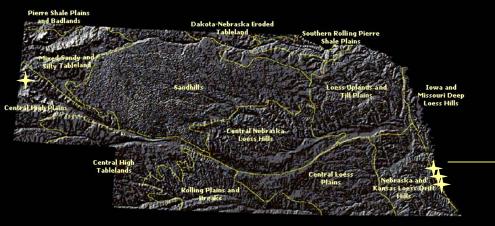
Winter hardiness ratings for cultivars developed in other regions may not readily translate to the Great Plains

USDA Plant Hardiness Zone Map (2003)

4 -20 to -30 °F

5 -10 to -20 °F


6 0 to -10 °F


Cathey (2003); American Horticultural Society

A Geography of Viticulture

Climate Parameters for Variety & Vineyard Site Selection

Growing Degree-Days (Base 50 °F); April 1 to October 31; No upper threshold (Winkler et al., 1974); Total heat units and cumulative days Average Tminimum Extreme--Isoline of -8 °F is an ecological boundary for Vitis vinifera; days/decade **#USDA Winter Hardiness Zones--4a to 6b Mean Frost-Free Period (Base 28 °F)**-Need a 165 day window **Mean January Air Temperature--Isoline of 30** °F is related to Pierce's Disease Mean Annual Tmaximum <32 °F as Cumulative Days</p> *****Mean Annual Number of Days of Tmaximum >90 °F Probability of 5-Consecutive Days >60 °F in January, February, or March *****Accumulation of GDDs (Base 32 °F) Consecutively for 1000 hrs (Bud Break) *****The parameters define the variety and sustainability of place, not necessarily the resulting quality and character of the wine.

+Existing Variety Trials

Wine quality is a function of variety, soil, climate, landscape, and vineyard L management

Data Mining

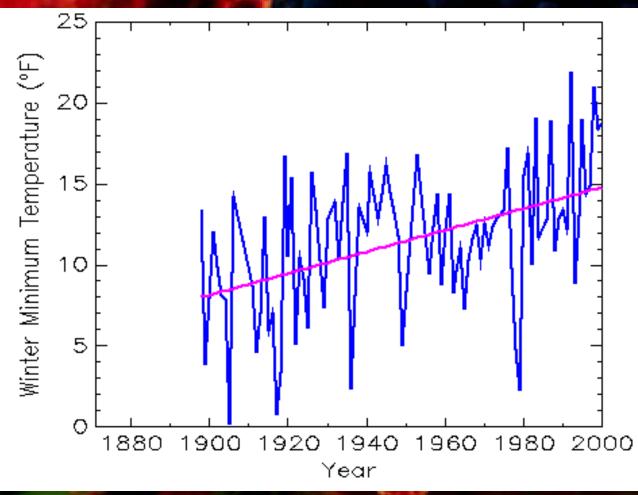
Geospatial Analysis

Variety Trial at Kimmel Orchard, Nebraska City

- Mapping of Varietal Adaptation
- Vineyard Suitability and Sustainability
- El Nino/La Nina Impacts
- Vineyard Management Zones
- Terroirs and AVAs

Climate Comparison of Major Vineyards in Nebraska

1071 to 2000 Normals


	19/1 to 2000 Normals				
Weather Station	FFP (28°F)	Days <-10°F	Tmin Extreme	Abs Tmin	GDD (50°F)
Cuthills Vineyard Osmond	166	8.4	-21.0	-28	3249
Geo. Spencer Kearney 4 NE	177	3.8	-14.4	-30	3325
James Arthur Vineyard Lincoln AP	183	4.0	-15.2	-22	3605
Blue Valley Vineyard Crete	190	2.8	-14.5	-25	3714
Lovers Leap Vineyard Crawford	153	4.3	-17.5	-33	2742
Geneva Research Farm Geneva, NY	198	0.5	-7.2	-16	2485

Changes in Thermal Regime Comparison of the Past 10 Years and the Total Length of Record

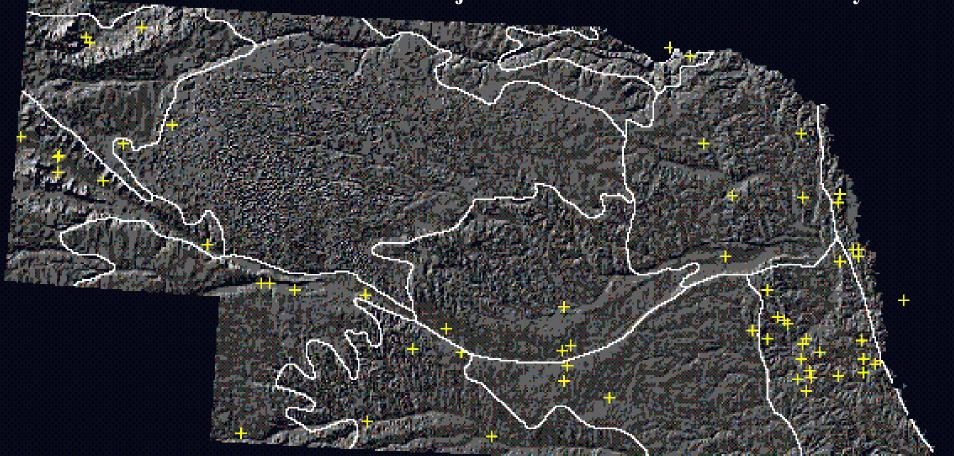
Weather Station	Record	FFP	Days	Tmin	Days	GDD
		(28°F)	<-10°F	Extreme	>95°F	(50°F)
			days/y			
Nebraska City	1994-2003	206	1.7	-10.6	5.1	3440
Nebraska City	1961-2003	202	3.0	-12.4	10.0	3477
			1			
Pawnee City	1994-2003	196	2.0	-13.3	14.6	3752
Pawnee City	1903-2003	191	2.5	-13.3	24.6	3934
ALCONTRACTOR OF						
Red Cloud	1994-2003	175	1.8	-9.6	27.8	3476
Red Cloud	1948-2003	174	3.5	-14.2	28.7	3549
Superior	1994-2003	195	0.5	-8.2	29.8	4008
Superior	1964-2003	193	1.7	-11.0	23.3	3842

Changes in Thermal Regime U.S. Historical Climatology Network

Crete, NE

Steeper slope to the trendline of winter minimum temperatures

Allows overwintering of grape pests and diseases


Promoting earlier budbreak and frost damage in spring

Doane College

The Working Hypothesis

Major Land Resource Areas and Vineyards

MLRAs as an ecological framework for terroirs and AVAs

A Geography of Viticulture Finding New Vineyard Sites with Extended Growing Seasons

A Finger Lakes Model for the Northern High Plains

Lake McConaughy

Vineyards in this region would have an extended growing season and total GDDs comparable to the Finger Lakes region, but the Tminimum extreme averages -12°F at Kingsley Dam. The surrounding weather stations average -17°F.

The lake buffering slows spring warm-up and premature budbreak, and reduces impact of late spring frosts.

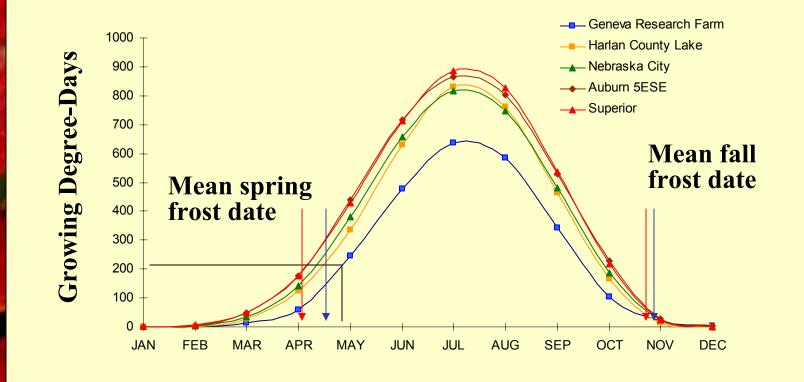
Winterhardiness

If Tminimum Extreme is Higher than	Injury Hazard	Suitable Varieties
0°F	Very Low	classic Vinifera
-5°F	Low	northern Vinifera
-10°F	Moderate	hardy Vinifera/ moderately hardy hybrids
-15°F	High	hardy hybrids/most American cultivars
<-20°F	Very High	very hardy Americar cultivars/hybrids (Swenson cultivars)

Length of Growing Season

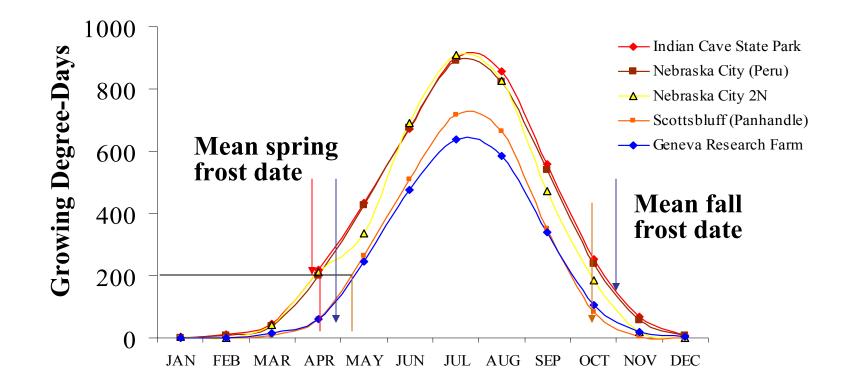
Frost-Free Period (Consecutive Days between 28°F)

Suitability for Grapes


> 180 days
171 to 180
161 to 170
151 to 160
< 150 days

Excellent (most late season) Good (mid- to late-season) Satisfactory (mid- and early) Marginal (only early) Unacceptable

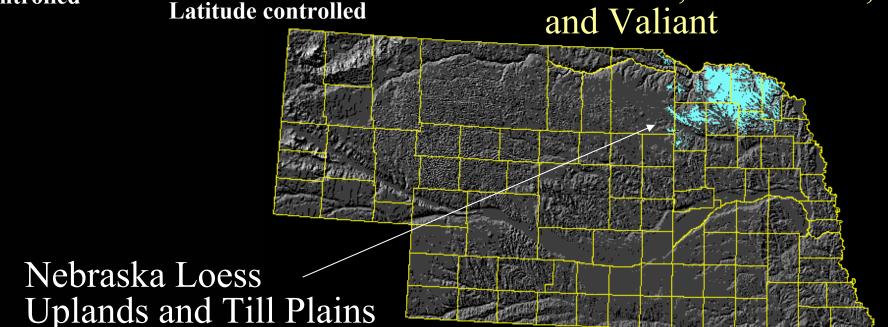
Winterhardiness is the key to varietal selection the Northern Great Plains


At the Panhandle Research and Extension Center (1971-2000)FFPDaysTminAbsGDDs(28°F)<-10°F</td>ExtremeTmin(50°F)163 d5.0 d-19.7°F-42°F2819

Growing Degree-Days and Bud Break

These four Nebraska locations occur within the proposed Vinifera Triangle and compared with the Geneva Experiment Station (NY). In the Vinifera Triangle, the spring warm-up is nearly 3-weeks faster than in the Finger Lakes region.

Growing Degree-Days and Bud Break-Field Trials



These four Nebraska cultivar trials are compared with the Geneva Experiment Station (NY).

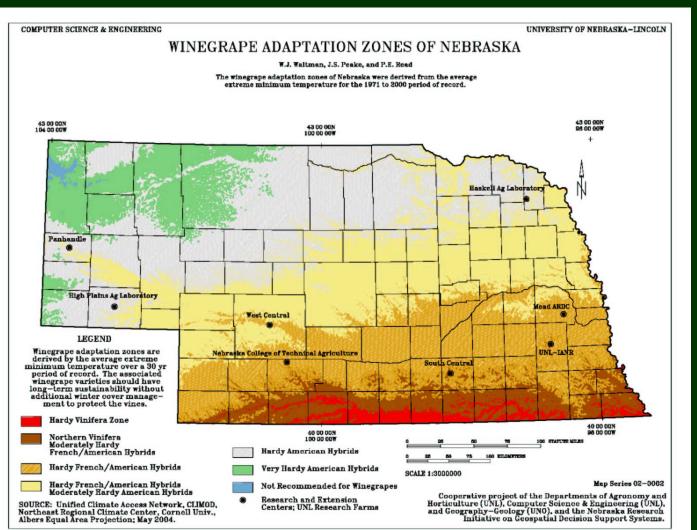
Winegrape Adaptation Zones

Frontenac, St. Croix, Lacrosse, Prairie Star, and Valiant

Elevation

controlled

Vinifera Triangle in Nebraska


Cabernet Franc, Chardonnay, Lemberger, Riesling, Chambourcin, Chancellor, Seyval Blanc, Traminette, Norton/Cynthiana, and Chardonel

> Iowa and Missouri Deep Loess Hills

Nebraska and Kansas Loess-Drift Hills

Summary and Conclusions

Maps of "genotype x environment"

Trends toward warming of Tminimum extremes in the past 10 years in southeast and southcentral Nebraska

Lengthening of frost-free period in the Republican River Valley

Although a warming trend allows introduction of more vinifera and French/ American hybrids that will survive, pre-mature budbreak limits consistent harvests